基于复用计算全息元件的多阶模式偏置波前传感器

刘长海 习锋杰 黄盛炀 姜宗福 马浩统

(国防科学技术大学光电科学与工程学院,湖南长沙 410073)

摘要 提出利用复用计算全息元件实现多阶模式同步的偏置模式波前传感器。对基于复用计算全息元件的多阶 模式偏置波前传感器进行了理论分析。为了实现复用计算全息元件,分别编码设计了包含4阶,10阶和20阶 Zernike 像差模式的复用计算全息图,讨论了复用计算全息图设计中几个关键问题。数值模拟研究了复用计算全 息图对单阶和多阶像差模式的探测性能。结果表明,在一定探测范围内,传感器能够响应与全息图内预先记录像 差模式相同的待测像差模式,且每一个模式的灵敏度都不同。全息图内记录模式数较少时,单阶模式探测的灵敏 度较大;记录模式数越多,模式之间擦除效应越严重,单阶和多阶模式灵敏度都受到一定影响。 关键词 传感器;自适应光学;偏置模式波前传感器;复用计算全息元件;Zernike 像差模式 中图分类号 O438.1;TP212 文献标识码 A doi: 10.3788/CJL201138.0214002

Multi-Mode-Biased Wavefront Sensor Employing Multiplexed Computer-Generated Holographic Element

Liu Changhai Xi Fengjie Huang Shengyang Jiang Zongfu Ma Haotong

(College of Optoelectronic Science and Engineering, National University of Defense Technology, Chanasha, Hunan 410073, China)

Abstract We propose to implement simultaneous multi-mode-biased modal wavefront sensor (MMBWS) by utilizing a multiplexed computer-generated holographic element (MCGHE). The theoretical treatments of MCGHE used as MMBWS is presented. To realize the MCGHE, three multiplexed computer-generated holograms (MCGHs) are designed by coding 4, 10 and 20 Zernike aberration modes, respectively. Several critical problems relevant with the designing of MCGH are discussed. The performance of detecting single and multiple aberration modes by employing MCGH is numerically simulated. The results indicate that, within typical range of amplitude, the tested aberration modes can be responded by MMBWS if they are identical with those coded in the MCGH, and the sensitivities corresponding to each mode are different. Once the number of coded aberration modes is small, the sensitivity of the single mode will be large enough; the more the aberration modes are coded , the more severe erasure effect among the aberration modes will exist, thus the sensitivity of both the single and the multiple modes will be affected.

Key words sensors; adaptive optics; multi mode-biased wavefront sensor; multiplexed computer-generated holographic element; Zernike aberration mode

OCIS codes 010.1080; 010.7350; 090.1760; 090.4220; 080.1010

1 引 言

E-mail: lch2000719@163.com

波前传感器是校正式自适应光学系统的重要组成部分^[1]。在闭环自适应光学系统中,波前传感器 通过探测实际波前的畸变信息,为波前校正器提供 驱动信号,因此波前传感器的运行速度是影响自适 应光学闭环系统时间带宽的因素之一。目前广泛使 用的哈特曼传感器^[2]和曲率传感器^[3~5],通过测量 畸变波前局部区域的斜率或曲率,然后通过矩阵运

作者简介:刘长海(1981—),男,博士研究生,主要从事自适应光学及计算全息等方面的研究。

导师简介:姜宗福(1963—),男,教授,博士生导师,主要从事高能激光技术、气动光学及自适应光学等方面的研究。 E-mail: jiangzongfu@yahoo.com

收稿日期: 2010-07-12; 收到修改稿日期: 2010-09-26

基金项目:国家自然科学基金(60908027)资助课题。

算得到校正器的驱动信号,繁重的计算量限制了其 运行速度的进一步提高。M. A. A. Neil 等^[6]提出的 一种模式波前传感器,利用正负偏置像差板和透镜 组合,在透镜后焦面为每一个待测像差模式产生一 对光斑,通过每对光斑光强差的变化确定畸变波前 中某阶像差模式系数,具有提高波前探测速度的潜 力。为了使这种模式传感器适用于多阶模式的同步 探测, M. A. A. Neil 等^[6,7]利用优化算法设计了记录 16 阶像差模式的计算全息图;G. P. Andersen 等^[8,9] 利用像素交叉的二维空间复用编码技术生成了记录 8 阶像差模式的计算全息图; S. K. Mishra 等^[10,11]利 用复合光栅技术对多个子全息元件求和,进行了相 关理论分析和数值模拟研究。以上方案分别在运算 量、模式串扰效应和能量利用率等方面有相应的不 足之处。本课题组利用二元计算全息技术对多个像 差模式编码进行了有益的尝试[12.13],一定程度上抑 制了零级光强,提高了传感器的光能利用率。

本文利用广义像差模式对基于复用计算全息元件(MCGHE)的偏置模式波前传感器进行了理论分析;基于离轴修正参考波计算全息编码方法,分别对4阶,10阶和 20阶 Zernike 像差模式进行编码记录,生成了复用计算全息图;数值模拟研究了复用全息图对单阶和多阶像差模式的探测性能。

2 多阶模式偏置波前传感器理论

基于复用计算全息元件的偏置模式波前传感器的光路如图 1 所示。单位振幅,相位为 $\Phi(r)$ 的待测波入射到与透镜密接的复用计算全息元件,透射光波被放置在透镜后焦面的 CCD 相机接收。假设光 波相位 Φ 可以用正交多项式集 $\{\varphi_k\}$ 展开,即 $\Phi = \sum_k \alpha_k \varphi_k$,每个正交多项式 φ_k 表示一种像差模式。对于多阶像差模式,利用修正离轴参考波计算全息编

码技术^[14],分别引入不同的倾斜平面参考波与包含 每阶像差模式的畸变波干涉产生子全息图,将子全 息图叠加作为复用计算全息元件。

设需要编码记录 N 阶像差模式 φ_k , $k = 1, 2, \cdots$, N,第 k 阶模式对应的畸变波为 $O_k = \exp(j\beta_k\varphi_k)$,参考 平面波为 $R_k = \exp(j\tau_k)$,其中 τ_k 表示第 k 个参考平面 波的倾斜量, φ_k , τ_k 的参数 r = (x, y) 均省略不写。复 用计算全息元件的总透射率函数 t 可以表示为

$$t = \frac{1}{2} + \frac{1}{4N} \sum_{k=1}^{N} \left\{ \exp\left[j(\beta_{k}\varphi_{k} + \tau_{k})\right] + \exp\left[-j(\beta_{k}\varphi_{k} + \tau_{k})\right] \right\},$$
(1)

式中的 $\frac{1}{2}$ 保证了总透射率为非负函数,而求和号内的指数项代表了每阶被编码的像差模式。待测波 $U_0 = \exp(j\Phi)$ 经过复用计算全息元件后,透射光波 U为

$$U = U_0 t = \frac{1}{2} U_0 + \frac{1}{4N} \sum_{k=1}^{N} \left\{ \exp[j(\beta_k \varphi_k + \Phi)] \exp(j\tau_k) + \exp[-j(\beta_k \varphi_k + \Phi)] \exp(-j\tau_k) \right\}.$$
 (2)

由透镜的傅里叶变换性质^[15]可知,透镜后焦面的光场分布 *U_f* 为

$$U_{f} = C\mathcal{F}\{U\} = \frac{C}{2}\mathcal{F}\{U_{0}\} + \frac{C}{4N}\sum_{k=1}^{N} \{\mathcal{F}\{\exp[j(\Phi + \beta_{k}\varphi_{k})]\} * \delta(f - \tilde{\tau}_{k}) + \mathcal{F}\{\exp[j(\Phi - \beta_{k}\varphi_{k})]\} * \delta(f + \tilde{\tau}_{k})\},$$
(3)

式中 \mathscr{F} {···}表示傅里叶变换,*C*为与透镜焦距、光波 波长和焦平面坐标有关的复变量, $\tilde{\tau}_k$ 是与 τ_k 相对应 的空间频率, δ 为脉冲函数。由脉冲函数性质可知, 只要保证各个 $\tilde{\tau}_k$ 之间间隔大于焦平面上各个点扩 展函数对应光斑直径,就可以找到第 *k* 阶编码像差 模式对应的位置± $\tilde{\tau}_k$ 处的光斑对,这一光斑对是关 于原点对称的。由于每个光斑位置不同且不重叠, 焦平面光强分布可表示为

$$I_{f} = \left| \frac{C}{2} \mathscr{F}\{\exp(j\Phi)\} \right|^{2} + \left(\frac{C}{4N} \right)^{2} \sum_{k=1}^{N} \left\{ |\mathscr{F}\{\exp[j(\Phi + \beta_{k}\varphi_{k})]\}|^{2} * \delta(f - \tilde{\tau}_{k}) + |\mathscr{F}\{\exp[j(\Phi - \beta_{k}\varphi_{k})]\}|^{2} * \delta(f + \tilde{\tau}_{k}) \right\}.$$
(4)
$$\Im \exists \dot{\tau} + \tilde{\tau}_{k} \ \psi \ h \ \exists k \ \exists t \ \mathfrak{B} \ \mathfrak$$

$$I_{\pm}^{k} = \left(\frac{C}{4N}\right)^{2} \left| \mathscr{F}\left\{ \exp\left[j(\boldsymbol{\Phi} \pm \beta_{k} \varphi_{k})\right] \right\} \right|^{2}.$$
(5)

根据 Booth 偏置模式传感的优化理论^[16],定义

传感器第 k 阶像差模式对应的输出信号归一化光强 差 W ka 为

$$W_{R_{\Delta}}^{k} = \frac{I_{+}^{k} - I_{-}^{k}}{I_{+}^{k} + I_{-}^{k}}.$$
(6)

为了从传感器输出信号中得到待测波像差模式的系数,需要确定二者之间的相关因子。根据 Neil 的理论^[6],定义第 k 像差模式对应的灵敏度 S_k 为传感器输出信号关于待测像差模式系数 α_k 的斜率在 $\alpha_k = 0$ 处的取值

$$S_{k} = \frac{\partial W_{R_{\Delta}}^{k}}{\partial \alpha_{k}} \bigg|_{\alpha_{k}=0}, \qquad (7)$$

灵敏度 S_k 的大小与待测波像差模式组成、探测面光 斑强度的选取方式、传感器信号输出方式、波前像差 函数的本征模式等因素有关。在小像差一阶近似条 件下,利用 Nijboer-Zernike 像差衍射理论^[17]或数值 求解确定出灵敏度 S_k 值后,可以得到待测波中包含 的第 k 阶像差模式系数 α_k

$$\alpha_k = S_k^{-1} \cdot W_{R\Delta}^k, \quad (k = 1, 2, \cdots, N)$$
 (8)

值得指出的是,传感器的输出信号正是由(4)式 右端第二部分所表示的全息元件的一级衍射光斑所 提供的。然而对于振幅型复用计算全息元件而言, 其零级衍射光斑也同时存在,且零级衍射光斑能量 高于一级衍射光斑。(4)式右端第一项就表示零级 衍射光斑,在不考虑像差模式影响的情况下,其与一 级光斑的强度比为 4N²:1,随着记录模式数 N 的递 增,传感器能量利用率会越来越低。因此,这种振幅 型全息元件的传感器不适合用于小动态范围探测器 的弱光系统中。

3 复用计算全息图的设计

实现多阶模式在同一光路中偏置,需要将多阶 像差模式预先记录在同一复用全息元件内,因此有 效设计复用全息元件是实现该波前传感器的关键。 鉴于 Zernike 正交多项式^[18]在光学测量和光波描述 方面的广泛应用,选择其作为波前像差函数的本征 模式。为了尽可能简化复用全息图的设计,提出一 种等效方案^[19]。对应于每阶待编码的像差模式,引 入特定倾斜方向的平面参考波,参考波与包含待编 码像差模式的光波相干涉产生子全息图,叠加子全 息图产生复用计算全息图,通过微加工工艺可以将 复用计算全息图制作成实际的全息元件。设计全息 图的抽样点数为1024×1024,编码波长为1064 nm, 大小为 12 mm×12 mm, 编码像差模式幅值为 1 rad。图 2(a)~(c)分别为编码 4 阶,10 阶和 20 阶 Zernike像差模式的连续振幅型复用计算全息图。 其中图 2(a)编码记录的 4 阶模式为 $Z_2^0, Z_2^1, Z_3^1, Z_4^0$, 图 2(b)的 10 阶模式为 $Z_2^0, Z_2^{\pm 2}, Z_3^{\pm 1}, Z_3^{\pm 3}, Z_4^0, Z_4^{\pm 2},$ 图 2(c)的 20 阶模式为 $Z_3 \sim Z_{22}$ 。为了方便编码,这 里同时使用了 Zernike 多项式的双标和单标两种表 示方法,二者对应关系为

$$\begin{cases} n = \operatorname{ceil}\left[\frac{-3 + (9 + 8r)^{1/2}}{2}\right], \\ m = 2r - n(n+2) \end{cases}$$
(9)

式中 n,m 和 r 分别为 Zernike 多项式的径向、角向和 单标表示,ceil[…]表示取比[…]大的最近一个整数。

图 2 编码有不同阶数像差模式的复用计算全息图。(a) $Z_2^0, Z_2^2, Z_3^1, Z_4^0$, (b) $Z_2^0, Z_2^{\pm 2}, Z_3^{\pm 1}, Z_3^{\pm 3}, Z_4^0, Z_4^{\pm 2}$, (c) $Z_3 \sim Z_{22}$ Fig. 2 Multiplexed computer-generated hologram coded with several aberration modes. (a) $Z_2^0, Z_2^2, Z_3^1, Z_4^0$, (b) $Z_2^0, Z_2^{\pm 2}, Z_3^{\pm 1}, Z_3^{\pm 3}, Z_4^0, Z_4^{\pm 2}$, (c) $Z_3 \sim Z_{22}$

在复用全息图的设计中需要注意几个关键问题: 1)编码像差模式幅值不能随意选择,因为其大小与基 于该全息图的传感器动态范围和传感精度相关,幅值 过大会导致传感器输出信号精度降低,幅值过小会引 起线性动态范围的缩小。根据 M. J. Booth¹⁶¹和本文 的计算结果,幅值的有效范围为 0.7~1.5 rad。2)在 同一二维面上编码记录像差模式的数量总是受限于 二维面的有限空间信息容量,记录过多的模式会引起 模式间的擦除,这一擦除效应在图 2(c)的中间部分 已经显现出来。3)针对每阶待编码的像差模式,所 引入平面参考波的倾斜方向的选择,决定着复用全 息图衍射场光斑的分布,同时也对擦除效应有不同 的影响。

4 数值模拟与分析

为了验证所设计的复用计算全息图对像差模式 的偏置传感性能,根据图1所示光路原理,有针对性 地在标准平面波内引入特定的像差模式作为待测光 波,考察透镜后焦面像差模式对应的一对光斑的变 化趋势及归一化光强差的变化情况。为了和设计的 复用全息图匹配,待测光波波长设定为1064 nm,波 面抽样数为1024×1024,像差模式的幅值变化范围 为[-1 rad,1 rad]。

首先,验证图 2(a)所示的编码 4 阶像差模式的复 用全息图。图 3(a),(b)为复用全息图对单阶像差模 式 Z² 模拟和多阶像差模式 Z², Z², Z¹, Z⁴, 探测时,焦

面光斑强度变化结果。图 3(a)中白色箭头所标示的 一对光斑对应于单阶模式 Z²,从左至右其光强的交 替变化正是由像差模式不同幅值引起的。图 3(b)中 4阶模式对应的光斑对均有相应的变化。但由于待 测像差模式多,光斑的整体强度降低。图 4(a),(b)为 对单阶像差模式 Z_2° 模拟和多阶像差模式 $Z_2^{\circ}, Z_2^{\circ}, Z_3^{\circ},$ Z⁴ 探测时,对应光斑对的归一化光强差 W_{R△}与像差 模式系数 α 的变化关系曲线。由(7)式知,图 4(a)中 曲线斜率即为 Z⁰ 像差模式对应的灵敏度 S。图中显 示,在「-1 rad,1 rad]范围内,归一化光强差与像差模 式系数具有良好的线性关系,且当待测像差模式与 偏置模式类型相同时,传感器输出响应灵敏度最大; 当待测像差与偏置模式类型不同时,灵敏度接近于 零。当待测光波包含多阶像差模式时,每阶像差模 式都有不同的灵敏度「如图 4(b)所示了,但比单阶模 式灵敏度低,这是模式之间的擦除效应所致。

图 3 复用计算全息图的模拟探测。(a)单阶像差模式 Z_2^0 , (b)多阶模式 Z_2^0 , Z_2^1 , Z_3^1 , Z_4^0

Fig. 3 Simulated detection of multiplexed computer-generated hologram. (a) single aberration mode Z_2^0 , (b) multiple aberration modes Z_2^0 , Z_2^2 , Z_3^1 , Z_4^0

图 4 各光斑对的归一化光强差 $W_{R\Delta}$ 与像差模式系数 α 的关系曲线。(a)单阶像差模式 Z_2^0 ,(b)多阶像差模式 Z_2^0 , Z_2^1 , Z_3^1 , Z_4^0 Fig. 4 Relationship curves between the normalization intensity difference $W_{R\Delta}$ of each spots pair symmetrically positioned and magnitude α of aberration mode. (a) single aberration mode Z_2^0 , (b) multiple aberration modes Z_2^0 , Z_2^1 , Z_4^1 , Z_4^0

其次,对图 2(b)所示的编码 10 阶像差模式的复 用全息图进行模拟验证。标准平面波经过该全息图 后,在透镜后焦面的光斑分布如图 5(a)所示,图 5(b) 为无像差情况下,中心对称光斑对的归一化光强差相 对于像差模式系数的变化曲线。由图可知每阶编码 的像差模式灵敏度均为零。图 5(c),(d)分别为探测 单阶像差模式 Z⁰₂ 和 4 阶像差模式 Z⁰₂,Z⁰₂,Z¹₃,Z⁴ 时, 焦面上各个光斑对的归一化光强差 W_{RA}与像差模式 系数 α 的关系曲线。为了方便表示,图中只突出显示 了与待测模式对应的曲线,每个曲线斜率代表对应像 差模式的灵敏度。当待测光波中只包含一阶模式时, 焦面光斑中只有对应的一对光斑灵敏度不为零;当 待测光波中包含多阶模式时,对应的归一化曲线也 不为零,但显然每个像差模式有不同的灵敏度,圆对 称像差模式比非圆对称像差模式灵敏度绝对值大。 对于不包含在待测光波中但编码在全息图中的像差 模式,其灵敏度相对比较小。

最后验证了图 2(c)所示的编码 20 阶像差模式的 复用全息图。所得结果与 10 阶模式的复用全息图类 似,如图 6(a)~(d)所示。其中图 6(c)和图 5(c)中所

图 5 用图 2(b)中的复用全息图探测待测光波得到的图样。(a)焦面光斑分布, $W_{R_{\Delta}}$ 与 α 的关系曲线,(b)无像差, (c)单阶像差模式 Z_{2}^{0} ,(d)多阶像差模式 Z_{2}^{0} , Z_{2}^{1} , Z_{3}^{0} , Z_{4}^{0}

Fig. 5 Diagram of lightwave tested by multiplexed computer-generated hologram shown in Fig. 2(b). (a) focal spots distribution, curves of $W_{R\Delta}$ and α with (b) no aberration mode, (c) single aberration Z_2^0 mode, (d) multiple aberration Z_2^0 , Z_2^1 , Z_3^1 , Z_4^0 modes

图 6 用图 2(c)中的复用全息图探测待测光波得到的图样。(a)焦面光斑分布, $W_{R\Delta}$ 与 α 的关系曲线,(b)无像差, (c)单阶像差模式 Z_3 ,(d)多阶像差模式 $Z_3 \sim Z_6$

Fig. 6 Diagram of lightwave tested by multiplexed computer-generated hologram shown in Fig. 2(c). (a) focal spots distribution, curves of $W_{R\Delta}$ and α with (b) no aberration mode, (c) single aberration Z_3 mode, (d) multiple aberration $Z_3 \sim Z_6$ modes

示的单阶像差模式的灵敏度相比明显较小,这也是 由过多阶数编码模式之间较严重的信息擦除引 起的。

5 结 论

在小像差近似下对基于复用计算全息元件的多 阶模式偏置波前传感器进行了理论分析。利用计算 全息编码技术产生复用计算全息图实现了多阶像差 模式的同步探测。数值模拟研究了传感器对单阶和 多阶 Zernike 像差模式的探测及响应特性。结果显 示,在一定像差范围内每阶像差模式衍射光斑对的 归一化光强差与像差模式系数大小直接相关。因此 在自适应光学闭环系统中,只需判断系统补偿后焦 面上光斑对相对强度差是否趋于平衡,就可以间接 快速地得到接近衍射极限的光波。在波前重构过程 中,首先需要根据传感器的响应曲线确定灵敏度,然 后求出相应类型待测像差模式系数大小。因此,该 种类型传感器更适合于闭环自适应系统。

参考文献

- 1 R. K. Tyson. Principles of Adaptive Optics [M]. San Diego: Academic Press, 1991. 213~255
- 2 B. C. Platt, R. Shack. History and principles of Shack-Hartmann wavefront sensing[J]. J. Refractive Surgery, 2001, 17(5): 573~577
- 3 F. Roddier. Curvature sensing and compensation: a new concept in adaptive optics[J]. *Appl. Opt.*, 1988, **27**(2): 1223~1225
- 4 Xi Fengjie, Xu Xiaojun, Wang Tiezhi et al.. Wavefront curvature sensor with phase defocus grating[J]. Acta Optica Sinica, 2007, 27(2): 377~378

习锋杰,许晓军,王铁志等.相位光栅型波前曲率传感器[J]. 光学学报,2007,27(2):377~378

- 5 F. Roddier. Wavefront curvature sensing and compensation methods in adaptive optics[C]. SPIE, 1991, 1487: 123~128
- 6 M. A. A. Neil, M. J. Booth, T. Wilson. New modal wavefront sensor: a theoretical analysis[J]. J. Opt. Soc. Am. A,

2000, 17(6): 1098~1107

- 7 M. A. A. Neil, M. J. Booth, T. Wilson. Closed-loop aberration correction by use of a modal Zernike wave-front sensor[J]. Opt. Lett., 2000, 25(15): 1083~1085
- 8 G. P. Andersen, R. Reibel. Holographic wavefront sensor [P]. United States of America as Represented by the Secretary of the Air Force, US 7248937 B1, 2007
- 9 F. Ghebremichael, G. P. Andersen, K. S. Gurley. Holographybased wavefront sensing [J]. Appl. Opt., 2008, 47 (4): A62~A69
- 10 S. K. Mishra, R. Bhatt, D. Mohan. Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal[J]. Appl. Opt., 2009, 48(33): 6458~6465
- 11 R. Bhatt, S. K. Mishra, D. Mohan *et al.*. Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: modeling and simulation[J]. *Opt. & Laser in Engng.*, 2008, **46**(6): 428~439
- 12 Liu Changhai, Jiang Zongfu. Holographic modal wavefront sensor: theoretical analysis and simulation [J]. Chinese J. Lasers, 2009, 36(s2): 147~152 刘长海,姜宗福. 全息模式波前传感器:理论分析与模拟[J]. 中 国激光, 2009, 36(s2): 147~152
- 13 L. Changhai, J. Zongfu, X. Fengjie *et al.*. Simulation of the computer-generated holographic modal wave front sensor [C]. *SPIE*, 2009, **7508**: 750809
- 14 Yu Zuliang, Jin Guofan. Computer-Generated Hologram[M]. 1st ed. Beijing: Tsinghua University Press, 1984 虞祖良,金国藩. 计算机制全息图[M]. 第一版. 北京:清华大 学出版社, 1984
- 15 J. W. Goodman. Introduction to Fourier Optics[M]. 3thed Qin Kecheng Transl.. Beijing. Publishing House of Electronics Industry, 2006 古德曼. 傅里叶光学导论[M]. 第三版. 秦克诚 译. 北京: 电子 工业出版社, 2006
- 16 M. J. Booth. Direct measurement of Zernike aberration modes with a modal wavefront sensor[C]. SPIE, 2003, 5162: 79~90
- 17 Born, Wolf. Principles of Optics[M]. 7nd. Yang Jiasun et al. Transl.. Beijing: Publishing House of Electronics Industry, 2006 波恩・沃耳夫.光学原理[M]. 第七版,杨葭荪等,北京:电子 工业出版社,2006
- 18 D. Malacara. Optical Shop Testing[M]. 2nd. New York: John Wiley & Sons, 1992
- 19 L. Changhai, X. Fengjie, M. Haotong *et al.*. Modal wavefront sensor based on binary phase-only multiplexed computergenerated hologram[J]. *Appl. Opt.*, 2010, **49**(27): 5117~5124